Crystal Structure of the DFNKF Segment of Human Calcitonin Unveils Aromatic Interactions between Phenylalanines

نویسندگان

  • Arianna Bertolani
  • Andrea Pizzi
  • Lisa Pirrie
  • Lara Gazzera
  • Giulia Morra
  • Massimiliano Meli
  • Giorgio Colombo
  • Alessandro Genoni
  • Gabriella Cavallo
  • Giancarlo Terraneo
  • Pierangelo Metrangolo
چکیده

Although intensively studied, the high-resolution crystal structure of the peptide DFNKF, the core-segment of human calcitonin, has never been described. Here we report how the use of iodination as a strategy to promote crystallisation and facilitate phase determination, allowed us to solve, for the first time, the single-crystal X-ray structure of a DFNKF derivative. Computational studies suggest that both the iodinated and the wild-type peptides populate very similar conformations. Furthermore, the conformer found in the solid-state structure is one of the most populated in solution, making the crystal structure a reliable model for the peptide in solution. The crystal structure of DFNKF(I) confirms the overall features of the amyloid cross-β spine and highlights how aromatic-aromatic interactions are important structural factors in the self-assembly of this peptide. A detailed analysis of such interactions is reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core.

Experimentally, the human calcitonin hormone (hCT) can form highly stable amyloid protofibrils. Further, a peptide consisting of hCT residues 15-19, DFNKF, was shown to create highly ordered fibrils, similar to those formed by the entire hormone sequence. However, there are limited experimental data regarding the detailed 3D arrangement of either of these fibrils. We have modeled the DFNKF prot...

متن کامل

The stability and dynamics of the human calcitonin amyloid peptide DFNKF.

The stability and dynamics of the human calcitonin-derived peptide DFNKF (hCT(15-19)) are studied using molecular dynamics (MD) simulations. Experimentally, this peptide is highly amyloidogenic and forms fibrils similar to the full length calcitonin. Previous comparative MD studies have found that the parallel beta-stranded sheet is a stable organization of the DFNKF protofibril. Here, we probe...

متن کامل

Nanostructure and stability of calcitonin amyloids

Calcitonin is a 32-amino acid thyroid hormone that can form amyloid fibrils. The structural basis of the fibril formation and stabilization is still debated and poorly understood. The reason is that NMR data strongly suggest antiparallel β-sheet calcitonin assembly, whereas modeling studies on the short DFNKF peptide (corresponding to the sequence from Asp15 to Phe19 of human calcitonin and rep...

متن کامل

Side chain interactions determine the amyloid organization: a single layer beta-sheet molecular structure of the calcitonin peptide segment 15-19.

In this paper we present a detailed atomic model for a protofilament, the most basic organization level, of the amyloid fibre formed by the peptide DFNKF. This pentapeptide is a segment derived from the human calcitonin, a natural amyloidogenic protein. Our model, which represents the outcome of extensive explicit solvent molecular dynamics (MD) simulations of different strand/sheet organizatio...

متن کامل

Supramolecular amplification of amyloid self-assembly by iodination

Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017